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Abstract A new embedded 5(3) pair of modified Runge–Kutta–Nyström methods
for the numerical solution of the Schrödinger equation is developed in this paper. The
asymptotic expressions of the principal local truncation errors for large energies are
obtained. We apply the new fifth-order method to the resonance problem, and apply
the new embedded 5(3) pair to elastic scattering phase-shift problem. The numerical
results show good numerical performance of the new embedded pair and the fifth-order
method.
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1 Introduction

The radial Schrödinger equation has the form

y′′(x) =
(

l(l + 1)

x2 + V (x) − E

)
y(x), (1)
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where the integer l representing the angular momentum, the term l(l + 1)/x2 is the
centrifugal potential. The function V (x) denotes the potential with V (x) → 0 if
x → ∞, and W (x) = l(l+1)/x2+V (x) is the effective potential satisfying W (x) → 0
as x → ∞. The real number E denotes the energy. The two boundary conditions
associated with the equation are y(0) = 0 and the other imposed at large x , determined
by physical considerations.

This type of equations appears often in scientific areas such as quantum chem-
istry, nuclear physics, molecular physics, celestial mechanics and so on. The past
three decades, a lot of research has been performed on the numerical solution of
the Schrödinger equation (1) or general ordinary differential equations with oscilla-
tory character [1–38]. We remark that most of the techniques are multistep methods.
Vigo–Aguiar and Simos gave an excellent review [20] on exponentially fitted mul-
tistep methods for the numerical solution of the Schrödinger equation. For variable
stepsize multistep methods we refer the reader to [26]. A disadvantage of multi-
step methods is that they need many initial values. On the other hand, Runge–Kutta
(–Nyström)[RK(N)] type methods have the simplicity of the initial start up. In addi-
tion, for variable-step algorithms, it is easy to change the steplength with RK(N) type
methods than with multistep methods.

Very recently, Kalogiratou et al. [2] proposed a procedure for the numerical solution
of the Schrödinger equation which is based on trigonometric fitting, the exponential
order of the new methods is up to second. The numerical results show that the new
methods have superior performance when solving the Schrödinger equation.

Based on the procedure of Kalogiratou et al. [2], we develop a new embedded
5(3) pair of modified Runge–Kutta–Nyström methods with four stages. In Sect. 2 we
give the necessary conditions for constructing new methods. In Sect. 3 we derive the
new 5(3) pair with modified Runge–Kutta–Nyström methods for second exponential
order. In Sect. 4 we give the asymptotic expressions of the local truncation errors for
large energies of the new pair and some related methods. In Sect. 5 the new fifth-
order method is applied to the resonance problem, and the new embedded 5(3) pair of
modified Runge–Kutta–Nyström methods is applied to elastic scattering phase-shift
problem. Section 6 is devoted to conclusions.

2 Preliminaries

2.1 Embedded modified Runge–Kutta–Nyström methods

A modified RKN method is defined by

Yi = yn + ci hy′
n + h

i−1∑
j=1

ai j f (xn + c j h, Y j ), i = 1, 2, . . . , s,

yn+1 = g1 yn + g2hy′
n + h2

s∑
i=1

b̄i f (xn + ci h, Yi ),
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y′
n+1 = g3 y′

n + h
s∑

i=1

bi f (xn + ci h, Yi ). (2)

The modified RKN method is associated with the following Butcher tableau:

0
c2 a21
...

...
. . .

cs as1 · · · as,s−1

g1 g2 b̄1 · · · b̄s−1 b̄s

g3 b1 · · · bs−1 bs

or equivalently by the quintuple (c, A, b̄, b, g), where A = (ai, j )s×s ∈ R
s×s, b̄T =

(b̄1, b̄2, . . . , b̄s)
T ∈ R

s, bT = (b1, b2, . . . , bs)
T ∈ R

s, c = (c1, c2, . . . , cs)
T ∈

R
s, g = (g1, g2, g3) ∈ R

3, with e = (1, 1, . . . , 1)T ∈ R
s . We note that for g1 = g2 =

g3 = 1 the modified RKN method is reduced to a standard RKN method.
An embedded q(p) pair of modified RKN method is based on the modified RKN

method (c, A, b̄, b, g) of order q and another modified RKN method (c, A, b̄∗, b∗, g∗)
of order p < q. We obtain a local error estimation of the pth-order method at the
integration point xn+1 = xn + hn by means of the quantity

E STn+1 = max
{‖ yn+1 − y∗

n+1 ‖∞, ‖ y′
n+1 − y′∗

n+1 ‖∞
}

There are many variable stepsize algorithms used in the literature. For the numerical
integration of the Schrödinger equation (1) we use the stepsize algorithms proposed
by Raptis and Cash [44]:

– if E STn+1 < T ol
100 , hn+1 = 2hn ,

– if T ol
100 ≤ E STn+1 < T ol, hn+1 = hn ,

– if E STn+1 ≥ T ol, hn+1 = hn
2 and repeat the step.

where T ol is the maximum allowable error.

2.2 Trigonometrically fitted modified Runge–Kutta–Nyström method

The operators L(x) and Lp(x) are defined as follows:

Yi (x) = y(x) + ci hy′(x) + h2
i−1∑
j=1

ai j Y
′′
j (x), i = 1, 2, . . . , s,

L(x) = y(x + h) − g1 y(x) − g2hy′(x) − h2
s∑

i=1

b̄i Y
′′
i (x),

Lp(x) = y′(x + h) − g3 y′(x) − h
s∑

i=1

bi Y
′′
i (x). (3)

123



1084 J Math Chem (2014) 52:1081–1098

Definition 1 (See [39]) The method has exponential order p if the associated operator
L vanishes for any linear combination of the functions

exp(ω0x), exp(ω1x), . . . , exp(ωpx),

where ωi are real or complex numbers.

Remark 1 (See [39]) If ωi = ω for i = 0, 1, . . . , n, n ≤ p, then the operator L
vanishes for any linear combination of

exp(ωx), x exp(ωx), . . . , xn exp(ωx), exp(ωn+1x), . . . , exp(ωpx).

We give the conditions for modified RKN methods in the following theorem.

Theorem 1 Modified RKN method (2) is of exponential order p if the following con-
ditions are satisfied:

cos v − g1 = −v2
s−1∑
k=0

(−1)k(b̄.Ak .e)v2k,

sin v
v

− g2 = −v2
s−2∑
k=0

(−1)k(b̄.Ak .c)v2k,

sin v
v

=
s−1∑
k=0

(−1)k(b.Ak .e)v2k,

cos v − g3 = −v2
s−2∑
k=0

(−1)k(b.Ak .c)v2k .

(4)

where v = ωi h for i = 0, 1, . . . , p.

Remark 2 If ωq = ωr = ω, for q, r ∈ 0, 1, . . . , p then the following additional
condition is required:

sin v = 2
s−1∑
k=0

(−1)k(k + 1)(b̄.Ak .e)v2k+1,

sin v−v cos v
v3 = 2

s−2∑
k=0

(−1)k(k + 1)(b̄.Ak .c)v2k,

cos v =
s−1∑
k=0

(−1)k(2k + 1)(b.Ak .e)v2k,

sin v = 2
s−2∑
k=0

(−1)k(k + 1)(b.Ak .c)v2k+1.

(5)
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3 Derivation of the new embedded 5(3) pair

3.1 Trigonometrically fitted fifth order modified RKN method with second
exponential order

We consider the four-stage modified RKN method formulas which can be denoted by
the Butcher tableau:

0
1
5

1
50

2
3 − 1

27
7
27

1 3
10 − 2

35
9
35

g1 g2 b̄1 b̄2 b̄3 b̄4

g3 b1 b2 b3 b4

(6)

The c- and A-values are taken from the standard fifth-order RKN method [40]. Con-
sider this modified RKN method, for second exponential order we require Eqs. (4, 5)
to be satisfied:

cos v − g1 = −(b̄.e)v2 + (b̄.A.e)v4 − (b̄.A.A.e)v6 + (b̄.A.A.A.e)v8,
sin v

v
− g2 = −(b̄.c)v2 + (b̄.A.c)v4 − (b̄.A.A.c)v6,

sin v
v

= (b.e) − (b.A.e)v2 + (b.A.A.e)v4 − (b.A.A.A.e)v6,

cos v − g3 = −(b.c)v2 + (b.A.c)v4 − (b.A.A.c)v6.

(7)

and

sin v = 2(b̄.e)v − 4(b̄.A.e)v3 + 6(b̄.A.A.e)v5 − 8(b̄.A.A.A.e)v7,

sin v − v cos v = v3(2(b̄.c) − 4(b̄.A.c)v2 + 6(b̄.A.A.c)v4),

cos v = (b.e) − 3(b.A.e)v2 + 5(b.A.A.e)v4 − 7(b.A.A.A.e)v6,

sin v = 2(b.c)v − 4(b.A.c)v3 + 6(b.A.A.c)v5.

(8)

Then the modified RKN method integrates exactly the functions

{cos(ωx), sin(ωx), x cos(ωx), x sin(ωx)} .

We set b̄1 = 1
24 , b̄2 = 25

84 , b1 = 1
24 . Solving the system of Eqs. (7) and (8), the

coefficients b̄3, b̄4, g1, g2, b2, b3, b4, g3 of this method are:

b̄3 =
(

45
(

5v3
(

2v6 − 93v4 + 768v2 − 3525
)

− 84v
(

2v6 − 63v4 + 375v2 − 375
)

cos(v)

+ 84
(

17v6 − 183v4 + 750v2 − 375
)

sin(v)
))

/(28Nv3),

b̄4 = 25
(

5v3
(
v4 − 54v2 + 540

)
− 18v

(
7v4 − 200v2 + 450

)
cos(v)
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+
(

966v4 − 9000v2 + 8100
)

sin(v)
)

/(4Nv3),

g1 =
((

−7v10 + 740v8 − 17625v6 + 66600v4 − 269250v2 + 675000
)

cos(v)

+ v
(

77v8 − 4500v6 + 41475v4 − 209400v2 + 618750
)

sin(v)

+ 25v4
(

25v4 − 852v2 + 1875
))/

(20N ),

g2 =
(

2v
(

7v8 − 390v6 + 6465v4 − 11550v2 − 33750
)

cos(v)

− 6
(

21v8 − 610v6 + 5215v4 − 4250v2 − 33750
)

sin(v)

+ 5v5
(

9v4 − 320v2 + 985
))/

(4Nv),

b2 =
((

−7v10 + 670v8 − 13725v6 + 39150v4 − 162750v2 + 337500
)

sin(v)

−10v
(

7v8 − 390v6 + 2745v4 − 10650v2 + 33750
)

cos(v)

− 25v3
(

7v4 − 152v2 + 375
))

/(168Mv3),

b3 = −9
(

25
(
v2 − 5

)
v3 + 10

(
v6 − 66v4 + 450v2 − 1500

)
v cos(v)

+
(
v8 − 106v6 + 2160v4 − 10500v2 + 15000

)
sin(v)

)
/(28Mv3),

b4 = −5
(

25v3 + 10
(
v4 − 70v2 + 450

)
v cos(v)

+
(
v6 − 110v4 + 2050v2 − 4500

)
sin(v)

)
/(8Mv3),

g3 =
((

−20v6 + 948v4 − 6600v2 + 9000
)

cos(v) − 5v4

− 2v
(
v6 − 82v4 + 1680v2 − 3450

)
sin(v)

) /
(12M),

where N = 7v8−180v6−1815v4+600v2+33750, M = 9v4−350v2+750, v = ωh.
For small values of |v| the above formulae are subject to heavy cancelations. In that

case the following Taylor series must be used:

b̄3 = 9

56
+ 9v4

2800
− 257v6

1890000
+ 5284049v8

37422000000
+ 2082554219v10

218918700000000
+ · · · ,

b̄4 = −13v4

8400
− 311v6

3780000
− 5428733v8

74844000000
− 726787289v10

62548200000000
+ · · · ,

g1 = 1 + v6

900
− 3v8

22400
+ 1483v10

21262500
+ · · · ,

g2 = 1 + v6

2520
− 1349v8

15120000
+ 1187509v10

56133000000
+ · · · .

b2 = 125

336
+ 3v4

3136
+ 1787v6

4233600
+ 2723113v8

16765056000
+ 2452820737v10

32691859200000
+ · · · ,
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b3 = 27

56
− 9v4

3920
− 41v6

44100
− 443701v8

1164240000
− 15295351v10

90810720000
+ · · · ,

b4 = 5

48
+ 3v4

2240
+ 379v6

604800
+ 3275269v8

11975040000
+ 561381377v10

4670265600000
+ · · · ,

g3 = 1 + v8

48000
+ 1187v10

68040000
+ 6537413v12

898128000000
+ · · · .

It is observed that when v → 0, this method reduces to the classical fifth-order RKN
method [40].

When apply this method to non-autonomous equation Y ′′ = f (x, y) in the scalar
case, the principal local truncation errors (PLTE) for y-component and its derivative
are given as follows:

PLTE(y) = h6

21600

(
−11 fy y(4)+4y(3)

(
fyy y′ + fxy

) −y(6)+36ω4 y(2) + 24ω6 y
)

,

PLTE(y′) = h6

108000
(55 fxy y(4) + 9 fy y(5) − 10 fy

2 y(3) + y(7) − 10 fyy y(3)y(2)

+ 55y′ fyy y(4) − 10 fxxy y(3) − 10(y′)2 fyyy y(3) − 20y′ fxyy y(3)).

Hence this method is algebraically of fifth order, we denote this modified RKN method
by RKN53NEWH.

3.2 Trigonometrically fitted third order modified RKN method with second
exponential order

For the purpose of developing an embedded 5(3) pair of modified RKN methods based
on the above presented fifth-order modified RKN method (A, c, b̄, b, g), we consider
the modified RKN method (A, c, b̄∗, b∗, g∗).

Following a similar approach as described above, for second exponential order, we
require Eqs. (4, 5) to be satisfied, thus the following conditions should hold:

cos v − g∗
1 = −(b̄∗.e)v2 + (b̄∗.A.e)v4 − (b̄∗.A.A.e)v6 + (b̄∗.A.A.A.e)v8,

sin v
v

− g∗
2 = −(b̄∗.c)v2 + (b̄∗.A.c)v4 − (b̄∗.A.A.c)v6,

sin v
v

= (b∗.e) − (b∗.A.e)v2 + (b∗.A.A.e)v4 − (b∗.A.A.A.e)v6,

cos v − g∗
3 = −(b∗.c)v2 + (b∗.A.c)v4 − (b∗.A.A.c)v6.

(9)

and

sin v = 2(b̄∗.e)v − 4(b̄∗.A.e)v3 + 6(b̄∗.A.A.e)v5 − 8(b̄∗.A.A.A.e)v7,

sin v − v cos v = v3(2(b̄∗.c) − 4(b̄∗.A.c)v2 + 6(b̄∗.A.A.c)v4),

cos v = (b∗.e) − 3(b∗.A.e)v2 + 5(b∗.A.A.e)v4 − 7(b∗.A.A.A.e)v6,

sin v = 2(b∗.c)v − 4(b∗.A.c)v3 + 6(b∗.A.A.c)v5.

(10)
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Then this modified RKN method integrates exactly the functions

{cos(ωx), sin(ωx), x cos(ωx), x sin(ωx)} .

We set b̄∗
1 = − 5

24 , b̄∗
2 = 125

168 , b∗
1 = − 1

12 . Solving the system of Eqs. (9) and (10), the
coefficients b̄∗

3, b̄∗
4, g∗

1 , g∗
2 , b∗

2, b∗
3, b∗

4, g∗
3 of this method are:

b̄∗
3 =

(
45

(
25v3

(
v6−15v4+132v2−975

)
−84v

(
2v6−63v4+375v2−375

)
cos(v)

+ 84
(

17v6 − 183v4 + 750v2 − 375
)

sin(v)
))

/(28Nv3),

b̄∗
4 = 25

(
25v3

(
v4 − 12v2 + 270

)
− 36v

(
7v4 − 200v2 + 450

)
cos(v)

+ 12
(

161v4 − 1500v2 + 1350
)

sin(v)
)

/(8Nv3),

g∗
1 =

((
−7v10 + 740v8 − 17625v6 + 66600v4 − 269250v2 + 675000

)
cos(v)

+ v
(

77v8 − 4500v6 + 41475v4 − 209400v2 + 618750
)

sin(v)

+ 125v4
(

2
(
v2 − 99

)
v2 + 375

)) /
(20N ),

g∗
2 =

(
25

(
v4−70v2+215

)
v5+2

(
7v8−390v6+6465v4−11550v2−33750

)
v cos(v)

− 6
(

21v8 − 610v6 + 5215v4 − 4250v2 − 33750
)

sin(v)
) /

(4Nv),

b∗
2 =

((
−7v10 + 670v8 − 13725v6 + 39150v4 − 162750v2 + 337500

)
sin(v)

− 10v
(

7v8 − 390v6 + 2745v4 − 10650v2 + 33750
)

cos(v)

+ 50v3
(

7v4 − 152v2 + 375
))

/(168Mv3),

b∗
3 = −9

(
10v

(
v6 − 66v4 + 450v2 − 1500

)
cos(v) − 50v3

(
v2 − 5

)

+
(
v8 − 106v6 + 2160v4 − 10500v2 + 15000

)
sin(v)

)
/(28Mv3),

b∗
4 = −5

(
10v

(
v4 − 70v2 + 450

)
cos(v) − 50v3

+
(
v6 − 110v4 + 2050v2 − 4500

)
sin(v)

)
/(8Mv3),

g∗
3 =

(
5v4 +

(
−10v6 + 474v4 − 3300v2 + 4500

)
cos(v)

−v
(
v6 − 82v4 + 1680v2 − 3450

)
sin(v)

) /
(6M),

where N = 7v8−180v6−1815v4+600v2+33750, M = 9v4−350v2+750, v = ωh.

123



J Math Chem (2014) 52:1081–1098 1089

For small values of |v| the above formulae are subject to heavy cancelations. In that
case the following Taylor series should be used:

b̄∗
3 = − 9

56
− v2

50
− 5941v4

630000
− 281621v6

141750000
− 1532110813v8

2806650000000
+ · · · ,

b̄∗
4 = 1

8
+ v2

50
+ 3911v4

630000
+ 431507v6

283500000
+ 2227141921v8

5613300000000
+ · · · ,

g∗
1 = 1 − v6

250
− 135767v8

226800000
− 627847v10

3189375000
+ · · · ,

g∗
2 = 1 + v4

300
− 731v6

945000
− 126901v8

3402000000
− 104954033v10

4209975000000
+ · · · .

b∗
2 = 25

42
+ 23v2

1680
+ 6233v4

705600
+ 416347v6

105840000
+ 715310257v8

419126400000
+ · · · ,

b∗
3 = 9

28
− 3v2

70
− 499v4

24500
− 39023v6

4410000
− 112343521v8

29106000000
+ · · · ,

b∗
4 = 1

6
+ 7v2

240
+ 7157v4

504000
+ 94931v6

15120000
+ 825291469v8

299376000000
+ · · · ,

g∗
3 = 1 + v4

600
+ 7v6

9000
+ 3929v8

10800000
+ 286043v10

1701000000
+ · · · .

It is observed that when v → 0, this method reduces to the classical third-order RKN
method [40].

When apply this method to non-autonomous equation Y ′′ = f (x, y) in the scalar
case, we present the PLTE for y-component and its derivative:

P LT E(y) = h5

900
(5y(5) + 6ω2 y(3) − 2 fy y(3) + 3ω4 y′),

P LT E(y′) = h4

1800
(5y(5) + 6ω2 y(3) − 2 fy y(3) + 3ω4 y′).

Therefore, this method is algebraically of third order, we denote this modified RKN
method by RKN53NEWL, and we denote the new 5(3) pair of modified RKN methods
by RKN53NEW.

4 Error analysis

In this paper we focus on solving the Schrödinger equation. In order to see the behavior
of the error, we have to carry out the error analysis. We follow the approach of Ixaru
and Rizea [42], one can find similar descriptions given by Anastassi and Simos [12],
Van de Vyver [32]. We consider the following RKN-type methods and labeling:

– EFRKN5: The fifth-order exponentially fitted explicit RKN method derived by Van
de Vyver [33].
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– RKN5 PL-DPL-AF: The optimized fifth-order explicit RKN method given by Kosti
et al. [34].

– RKN5 PL-AF-DAF: The optimized fifth-order explicit RKN method given by Kosti
et al. [35].

– FRKN53H: The fifth-order explicit RKN method presented by Van de Vyver [36].
– RKN5S2: The second fifth-order explicit RKN method obtained by Kalogiratou et

al. [2].
– RKN53NEWH: The fifth-order modified RKN method obtained in this paper.
– RKN53NEWL: The third-order modified RKN method obtained in this paper.
The fitted frequency ω determines the performance of the method. A reasonable strat-
egy for frequencies approximations is: Divide [a, b] in some subintervals and on each
of them the function W (x) is approximated by a constant W̄ , a choice for the fitted

frequency ω in such a subinterval is given by ω =
√

E − W̄ . Equation (1) is equivalent
with y′′ = f (x, y), where f (x, y) = (W (x) − E)y(x). We have found the following
asymptotic expressions for large |E |:

P LT E(y)E F RK N5 ≈ − h6

1800
E2 y(x)ΔW,

P LT E(y′)E F RK N5 ≈ − h6

7560000
E2 (

3107y(x)W ′(x) + 4647ΔW )y′(x)
)
,

P LT E(y)RK N5P L−D P L−AF ≈ − h6

7200
E3 y(x),

P LT E(y′)RK N5P L−D P L−AF ≈ h6

7200
E3 y′(x),

P LT E(y)RK N5P L−AF−D AF ≈ − h6

7200
E3 y(x),

P LT E(y′)RK N5P L−AF−D AF ≈ h6

7200
E3 y′(x),

P LT E(y)F RK N53H ≈ −h6 y(x)

1800
E2ΔW,

P LT E(y′)F RK N53H ≈ h6

1200
E2 y(x)W ′(x),

P LT E(y)RK N5S2 ≈ − h6

3600
E

(
y(x)W ′′(x) + 4W ′(x)y′(x) − 2y(x)(ΔW )2

)
,

P LT E(y′)RK N5S2 ≈ h6

1200
E2 y(x)W ′(x),

P LT E(y)RK N53N EW H ≈ h6

3600
E

(
3y(x)W ′′(x) + 4W ′(x)y′(x) + 6y(x)(ΔW )2

)
,

P LT E(y′)RK N53N EW H ≈ h6

1200
E2 y(x)W ′(x),

P LT E(y)RK N53N EW L ≈ −h5

75
Ey(x)W ′(x),

P LT E(y′)RK N53N EW L ≈ − h4

150
Ey(x)W ′(x),
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where ΔW = W (x) − W̄ .
It has been explained in [41] (p. 197) that the amplitude of the derivative y′ is

bigger by a factor E1/2 than that of y. We conclude that the local errors produced
by methods RKN5S2 and RKN53NEWH on y and y′ are proportional with E3/2

and E2, respectively. Both of them will have good numerical performance than other
fifth-order methods listed above when solving the Schrödinger equation especially
for large Energies. Further more, we observe that the local errors produced by the
new third-order method RKN53NEWL on y and y′ are proportional with E and E ,
respectively. Thus the new 5(3) pair of modified RKN method RKN53NEW will have
good numerical performance when solving the Schrödinger equation especially for
large energies. This will be confirmed by the numerical results in the next section.

5 Numerical illustrations

5.1 Comparison with fixed step-size methods

In this subsection we will compare the numerical performance of the fifth-order
method RKN53NEWH of the new 5(3) pair with other fifth-order RKN-type methods:
EFRKN5, RKN5 PL-DPL-AF, RKN5 PL-AF-DAF, FRKN53H, RKN5S2 which have
been listed in Sect. 4.

We consider the numerical integration of the Schrödinger equation (1) with the
well-known Woods-Saxon potential and in the case of l = 0:

V (x) = u0

1 + q
+ u1q

(1 + q)2 , q = exp

(
x − x0

a

)
,

with

u0 = −50, x0 = 7, a = 0.6 and u1 = −u0

a
.

The domain of integration is taken as [0, 15].
For this test potential we consider the so-called the resonance problem which con-

sists in finding those resonances(or energies) E ∈ [0, 1000], at which the phase-shift
is equal to π

2 . The boundary conditions for this problem are

y(0) = 0 and y(x) = cos(
√

Ex) f or large x .

Following the suggestion by Ixaru and Rizea [42], the fitted frequency ω is given by

ω =
{√

50 + E, x ∈ [0, 6.5],√
E, x ∈ [6.5, 15].

The numerical results obtained by the RKN-type methods are compared with the ana-
lytical solution of the Woods-Saxon potential, which are rounded to six decimal places.
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Fig. 1 Efficiency for the Schrödinger equation using E = 53.588872
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Fig. 2 Efficiency for the Schrödinger equation using E = 163.215341

Four resonances are considered:53.588872, 163.215341, 341.495874, 989.701916.
Figures 1, 2, 3, and 4 show the errors log10|Eanalytical − Ecalculated| against −log2(h).
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Fig. 3 Efficiency for the Schrödinger equation using E = 341.495874
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Fig. 4 Efficiency for the Schrödinger equation using E = 989.701916

5.2 Comparison with variable step-size methods

The methods used in the comparisons have been denoted by

– EFRKN43F: The exponentially fitted embedded 4(3) pair of explicit RKN methods
with FSAL property derived by Franco [37],
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Fig. 5 The number of function evaluations used by the considered codes as a function of l from the
centrifugal potential for energies k2 = 25

– FRKN43: The embedded 4(3) pair of explicit RKN methods with FSAL property
obtained by Van de Vyver [38],

– EFRKN53: The exponentially fitted embedded 5(3) pair of explicit RKN methods
presented by Van de Vyver [33],

– FRKN53: The embedded 5(3) pair of explicit RKN methods given by Van de
Vyver [36],

– RKN53NEW: the new embedded 5(3) pair of modified RKN methods derived in
this paper.

We consider the numerical integration of the Schrödinger equation (1) with the
widely discussed Lennard–Jones potential [29,43] which is given as follows

V (x) = 500
( 1

x12 − 1

x6

)
.

Following the work by Raptis and Allison [45], we start the numerical integration
from x0 = 0.7 with an initial stepsize h = 0.01. The first boundary condition can
be transformed to y(x0) = 0 [43], and we choose y′(x0) = 10−6 for the initial
condition of the derivative. We use the variable stepsize algorithm in Sect. 2.1, and
take T ol = 10−8 for the computation of the phase-shifts correct to four decimal places
that has been pointed out by Raptis and Cash [44].

We consider the energies k2 = 25, k2 = 100, k2 = 225 and k2 = 900 and choose
the fitted frequency ω = k. For the calculation of phase-shifts, Figs. 5, 6, 7, and 8
show the number of function evaluations as a function of l = 0, . . . , 10.
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Fig. 6 The number of function evaluations used by the considered codes as a function of l from the
centrifugal potential for energies k2 = 100
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Fig. 7 The number of function evaluations used by the considered codes as a function of l from the
centrifugal potential for energies k2 = 225

6 Conclusions

On the basis of the procedure of Kalogiratou et al. [2], a new embedded 5(3) pair
of modified Runge–Kutta–Nyström methods is developed in this paper. We carry out
error analysis on the new 5(3) pair and some related methods, and obtain the asymp-
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Fig. 8 The number of function evaluations used by the considered codes as a function of l from the
centrifugal potential for energies k2 = 900

totic expressions of the PLTEs for large energies. The analysis suggests theoretical
advantages of the new 5(3) pair and the new fifth-order method when solving the
Schrödinger equation. We apply the new fifth-order method to the Schrödinger equa-
tion with the Woods–Saxon potential (the resonance problem), and apply the new
embedded 5(3) pair to elastic scattering phase-shift problem. The numerical results
show good numerical performance of the new embedded 5(3) pair and the fifth-order
method.

Finally, we note that the new developed 5(3) pair depend on the fitted frequency,
we should keep in mind that the adapted methods can be applied only when a good
estimate of the principal frequency is obtained in advance. For more techniques of
estimating dominant frequency we refer the reader to the papers [46–49].
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