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Abstract A new embedded 5(3) pair of modified Runge—Kutta—Nystrom methods
for the numerical solution of the Schrodinger equation is developed in this paper. The
asymptotic expressions of the principal local truncation errors for large energies are
obtained. We apply the new fifth-order method to the resonance problem, and apply
the new embedded 5(3) pair to elastic scattering phase-shift problem. The numerical
results show good numerical performance of the new embedded pair and the fifth-order
method.
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1 Introduction

The radial Schrodinger equation has the form

1(l+1
V() = ( ( ; ) v - E) Y@, (1)
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where the integer / representing the angular momentum, the term /(! + 1)/x? is the
centrifugal potential. The function V (x) denotes the potential with V(x) — 0 if
x — oo,and W(x) = l(l+l)/x2+V(x) isthe effective potential satisfying W (x) — 0
as x — 0o. The real number E denotes the energy. The two boundary conditions
associated with the equation are y(0) = 0 and the other imposed at large x, determined
by physical considerations.

This type of equations appears often in scientific areas such as quantum chem-
istry, nuclear physics, molecular physics, celestial mechanics and so on. The past
three decades, a lot of research has been performed on the numerical solution of
the Schrodinger equation (1) or general ordinary differential equations with oscilla-
tory character [1-38]. We remark that most of the techniques are multistep methods.
Vigo—Aguiar and Simos gave an excellent review [20] on exponentially fitted mul-
tistep methods for the numerical solution of the Schrodinger equation. For variable
stepsize multistep methods we refer the reader to [26]. A disadvantage of multi-
step methods is that they need many initial values. On the other hand, Runge—Kutta
(=Nystrom)[RK(N)] type methods have the simplicity of the initial start up. In addi-
tion, for variable-step algorithms, it is easy to change the steplength with RK(N) type
methods than with multistep methods.

Very recently, Kalogiratou et al. [2] proposed a procedure for the numerical solution
of the Schrodinger equation which is based on trigonometric fitting, the exponential
order of the new methods is up to second. The numerical results show that the new
methods have superior performance when solving the Schrédinger equation.

Based on the procedure of Kalogiratou et al. [2], we develop a new embedded
5(3) pair of modified Runge—Kutta—Nystrom methods with four stages. In Sect. 2 we
give the necessary conditions for constructing new methods. In Sect. 3 we derive the
new 5(3) pair with modified Runge—Kutta—Nystrom methods for second exponential
order. In Sect. 4 we give the asymptotic expressions of the local truncation errors for
large energies of the new pair and some related methods. In Sect. 5 the new fifth-
order method is applied to the resonance problem, and the new embedded 5(3) pair of
modified Runge—Kutta—Nystrom methods is applied to elastic scattering phase-shift
problem. Section 6 is devoted to conclusions.

2 Preliminaries
2.1 Embedded modified Runge—Kutta—Nystrom methods
A modified RKN method is defined by
i—1
Y; =yn+cihy;, +hZa,~jf(xn+th,Yj), i=1,2,...,s,

j=1

N
Yl = 1Yn + g2hyy + 12 D b f (v + cih, Yo),

i=1
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N
Vi1 = &Y+ h D bi f(xn + cih, Yi). )

i=1

The modified RKN method is associated with the following Butcher tableau:

0
2 azl
Cs 223 ce g s—1
81 & by .- bs_1 by
83 by ce by by

or equivalently by the quintuple (c, A, b, b, g), where A = (@i, )sxs € RYS, T
(b1, by, ....,b)T € RS, bT = (b1, by, ....b))T € RS, c = (c1,c0,...,¢)T
RS, g = (g1, &2, g3) € R}, withe = (1, 1,..., DT € R*. We note that for g; = g>
g3 = 1 the modified RKN method is reduced to a standard RKN method.

An embedded ¢ (p) pair of modified RKN method is based on the modified RKN
method (c, A, b, b, g) of order ¢ and another modified RKN method (c, A, b*, b*, g%
of order p < g. We obtain a local error estimation of the pth-order method at the
integration point x,, 11 = x, + h, by means of the quantity

m ol

EST,+1 = max {” Yn+1 — )’:+1 lloo, |l yl/1+1 - y/z-H ||oo}

There are many variable stepsize algorithms used in the literature. For the numerical
integration of the Schrodinger equation (1) we use the stepsize algorithms proposed
by Raptis and Cash [44]:

— if ESTyy1 < T8 hyyy = 20y,
—if T8 < EST,p1 < Tol, hyy1 = hy,
— if ESTy41 > Tol, hy41 = % and repeat the step.

where T ol is the maximum allowable error.

2.2 Trigonometrically fitted modified Runge—Kutta—Nystrom method

The operators L(x) and Lp(x) are defined as follows:

i—1
Vi) = y(0) +eihy' () + 02D aiY), i=1.2..s.
j=1

L(x) = y(x +h) — g1y(x) — g2hy' (x) — h* D~ biY{ (x),

i=1

Lp(x) = y'(x +h) — g3y'(x) —h D_ b ¥/ (x). 3)
i=1
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Definition 1 (See [39]) The method has exponential order p if the associated operator
L vanishes for any linear combination of the functions

exp(wpx), exp(w1x), ..., exp(wpx),

where w; are real or complex numbers.

Remark 1 (See [39]) If w; = wfori = 0,1,...,n,n < p, then the operator L
vanishes for any linear combination of

exp(wx), x exp(wx), ..., x" exp(wx), exp(wy+1x), ..., exp(wpXx).

We give the conditions for modified RKN methods in the following theorem.

Theorem 1 Modified RKN method (2) is of exponential order p if the following con-
ditions are satisfied:

s—1 _
cosv — g1 = —v2 > (=DF(b.AF.e)v?k,
k=0

) s—2 _
mgv — g = —v? Z (—l)k(b.Ak.C)UZk,
k=0

4 o 4)
S = 3 (=D (b. AR ),
k=0
s—2
cosv — g3 = —v> > (—DF(b. AR o) v*.
k=0
where v = w;h fori =0,1,..., p.
Remark 2 If wy = w, = o, for g,r € 0,1,..., p then the following additional
condition is required:
s—1 _
sinv =23 (=D¥k + 1)(b.A* .e)v* 1,
k=0
) s=2 -
snp—peost — 2 3 (=DM (k + 1) (b. AR o),
k=0
Q)

s—1
cosv = > (=DFQ2k 4 1)(b.A* .e)v?*,
k=0

s—2
sinv =2 (=D*k + 1)(b.A* .c)v2k+T1,
k=0
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3 Derivation of the new embedded 5(3) pair

3.1 Trigonometrically fitted fifth order modified RKN method with second
exponential order

We consider the four-stage modified RKN method formulas which can be denoted by
the Butcher tableau:

0
1 1
3 350
2 _1 A
3 7 27
I I R ) ©
10 35 3%
g1 & | by by b3 by
83 by by by by

The c- and A-values are taken from the standard fifth-order RKN method [40]. Con-
sider this modified RKN method, for second exponential order we require Eqs. (4, 5)
to be satisfied:

cosv — g1 = —(b.e)v? + (b.A.e)v* — (b.A.A.)v® + (b.A.A.A.e)V®,
B — g = —(b.c)v? + (b.A.c)v* — (b.A. AN,

S0 — (b.e) — (b.A.e)v? + (b.A.A.e)v* — (b.A.A. AN, 7
cosv — g3 = —(b.c)v® + (b.A.c)v* — (b.A.A.c)d.
and
sinv = 2(b.e)v — 4(b.A.e)v> + 6(b.A.A.e)v> —8(b.A.A.A.e)V,
sinv —vcosv = v3Q2(b.c) — 4(bh.A.c)v? + 6(b.A.A.c)vY), ®

cosv = (b.e) — 3(b.A.e)v> 4+ 5(b.A.A.e)v* —T(b.A.A.A.e)°,
sinv = 2(b.c)v — 4(b.A.c)v> +6(b.A.A.c)v .

Then the modified RKN method integrates exactly the functions
{cos(wx), sin(wx), x cos(wx), x sin(wx)} .

We set by = ﬁ, by = %, b = 21—4. Solving the system of Egs. (7) and (8), the
coefficients b3, by, g1, 82, b2, b3, ba, g3 of this method are:

by = (45 (5v3 (2v6 — 93v* + 76802 — 3525)
— 84 (21)6 — 63v* + 37502 — 375) cos(v)
484 (17u6 —1830* 4+ 75002 — 375) sin(v))) JQ28NVY),

by = 25 (5v3 (v4 _ 54?4 540) —18v (7v4 — 20002 + 450) cos(v)
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+ (9661}4 — 900002 + 8100) sin(v)) J(4NV),

g1 = ((—7v1° + 74008 — 1762505 + 666000+ — 26925002 + 675000) cos(v)
+v (771)8 — 45000° 4 41475v* — 209400v° + 618750) sin(v)
+250* (250 - 85207 + 1875) ) / CON),

g2 = (2v (7v8 — 39000 + 6465v* — 1155002 — 33750) cos(v)
—6 (211}8 — 6100° + 52150 — 425002 — 33750) sin(v)
+50% (90* = 32007 +985) ) /4N w),

by = ((—7v1° + 67008 — 1372505 + 391500 — 16275002 + 337500) sin(v)
—10v (7v8 — 3900° + 2745v* — 106500> + 33750) cos(v)

— 253 (7u4 —1520% + 375)) /(168Mv3),

by = —9 (25 (v2 - 5) v3 410 (v6 — 66v* + 45002 — 1500) v cos(v)
n (v8 —106v° + 2160v* — 105000 + 15000) sin(v)) /Q8MV3),
by = —5 (25v3 10 (v4 —700% + 450) v cos(v)

+ (v6 — 110v* + 205002 — 4500) sin(v)) /M),
g3 = ((—201)6 + 948u* — 660002 + 9000) cos(v) — Sv*

— 20 (v° = 820" + 168007 — 3450) sin(v) ) /(121),

where N = 7v8— 18006 — 1815v* +600v> 433750, M = 9v* —350v>+750, v = wh.
For small values of |v| the above formulae are subject to heavy cancelations. In that
case the following Taylor series must be used:

g2 vt 25T 52840490° 208255421900

3= 56 T 2800 1890000 37422000000 T 218918700000000 T
; 13v* 31100 542873308 72678728910

4= 73400 3780000 74844000000  62548200000000

0 308 148310
900 22400 ' 21262500

0 134908 1187509010
82 =14 5535 ~ 15120000 T 56133000000
125 3v* 17870 272311308 2452820737010

b2 = 336 T 3136 T 4233600 | 16765056000  32691859200000 |’

gr=1+
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27 9t 4120 44370108 15295351910

=56 3920 44100 1164240000 90810720000

e D 3 N 379v° N 32752690" N 561381377v'" N
© 748 7 2240 T 604800 ' 11975040000 ' 4670265600000 ’

8 1187010 6537413012

* 28000 T 68020000 T 898128000000 T

g=1

It is observed that when v — 0, this method reduces to the classical fifth-order RKN
method [40].

When apply this method to non-autonomous equation Y = f(x, y) in the scalar
case, the principal local truncation errors (PLTE) for y-component and its derivative
are given as follows:

h6
PLTE(y) = 37 (—1 LAy @44y (fiyy + foy) =y @436 y® + 24a)6y) :
6

05000 O3 Loy Y 9L = 1042y + YD =10 £,y

+55y/fyyy(4) - lofxxyy(3) - lo(y/)zfyyyya) - zoy/fxyyy(3))~

PLTE(Y') =

Hence this method is algebraically of fifth order, we denote this modified RKN method
by RKN53NEWH.

3.2 Trigonometrically fitted third order modified RKN method with second
exponential order

For the purpose of developing an embedded 5(3) pair of modified RKN methods based
on the above presented fifth-order modified RKN method (A, c, b, b, g), we consider
the modified RKN method (A, c, b*, b*, g*).

Following a similar approach as described above, for second exponential order, we
require Egs. (4, 5) to be satisfied, thus the following conditions should hold:

cosv — gf = —(b*.e)v? + (b*.A.e)v* — (b*.A.A.e)® + (b*. A.A.A.e)d,
v g¥ = —(b*.c)v? + (b*. A0t — (b*.A.A.c)®,

- )
S0 — (p*.e) — (b*.A.e)v? + (b*.A.Ae)vt — (b* A.A.A.e)S,
cosv — g§ = —(b*.0)v? + (b*.A.c)v* — (b*.A.A.cnS.
and
sinv = 2(b*.e)v — 4(b*.A.e)v> + 6(b*.A.A.e)v° — 8(b*.A.A.A.e)v,
sinv — veosv = v32(b*.c) — 4(b*.A.c)v? + 6(b*.A.A.c)vY), (10)

cosv = (b*.e) — 3(b*.A.e)v? + 5(b*.A.A.e)v* — T(b*.A.A.A.e)O,
sinv = 2(b*.c)v — 4(b*.A.c)vd + 6(b*.A.A.c)v°.
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Then this modified RKN method integrates exactly the functions
{cos(wx), sin(wx), x cos(wx), x sin(wx)} .

We set l;i‘ :_—2%, B; = %, b} = —ﬁ. Solving the system of Eqs. (9) and (10), the
coefficients b3, b}, g1, g5, b3, b3, b}, g3 of this method are:

B = (45 (2507 (0 -150*+13207-975) —84v (20°—630*+37507~375 ) cos(v)
+ 84 (171)6 —183v* 4+ 75002 — 375) sin(u))) JQ8NVY),

by =25 (250° (v* = 1202 + 270) — 36 (7 — 2000 + 450) cos(v)
+12 (1611)4 — 150002 + 1350) sin(v)) /(8NVY),

gt = ((—7v10 + 74008 — 176250° + 66600v* — 26925002 + 675000) cos(v)
tv (77v8 — 450000 + 414750* — 20940002 + 618750) sin(v)
+1250* (2 (v2 - 99) v 4 375) ) /20N),

gt = (25 (v4—70v2+215) 342 (7v8—390v6+6465v4—11550v2—33750) v cos(v)
—6 (210 = 6100° + 52150* — 425002 — 33750) sin(v) ) /(4N v),

bt = ((—7v1° + 67008 — 1372505 + 391500 — 16275002 + 337500) sin(v)

[\e)

— 10v (7v8 — 3900° + 2745v* — 106500* + 33750) cos(v)
+500° (7u4 —1520% + 375)) /(168 Mv3),
bt =—9 (10v (v6 — 66v* + 45002 — 1500) cos(v) — 500 (u2 _ 5)
+ (vs —106° + 2160v* — 1050002 + 15000) sin(v)) /(28 Mv),
b = -5 (10u (v4 —700% + 450) cos(v) — 5003
+ (v6 — 110v* + 205002 — 4500) sin(v)) /M),
g = (5u* + (—100° + 4740* — 330007 + 4500) cos(v)

—v (v° — 820" + 168007 — 3450) sin(v)) /(6M),

where N = 7v8— 18000 —1815v* +600v2+33750, M = 9v*—35002+750, v = wh.
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For small values of |v| the above formulae are subject to heavy cancelations. In that
case the following Taylor series should be used:

- 9 v 5941v*  2816210% 153211081308
37756750 630000 141750000 _ 2806650000000
o =l+v_2+ 3911v* N 4315070° N 22271419218 L
478750 " 630000 ' 283500000 ' 5613300000000 ’
o 13576708 627847v10
81 =1~ 350 ~ 226800000 ~ 3189375000 T
v? 73100 126901 v® 10495403310

* _— —_— —_— —_— DR
82 300~ 945000 3402000000 4209975000000
L 25 23vr  6233v*  416347v® 71531025708
by = —+ + + + +--
42 1680 705600 = 105840000 ~ 419126400000
e 2 3v2 499v*  39023v8 11234352108
3= 52 0

28 70 24500 _ 4410000 29106000000
1

gl Tv* N 7157v* N 949310° N 82529146908 L
76 ' 240 ' 504000 © 15120000 ' 299376000000 ’
g*=1+i+ T0® N 3929¢8 N 286043010 L

3 600 ~ 9000 ~ 10800000 ~ 1701000000 '

It is observed that when v — 0, this method reduces to the classical third-order RKN
method [40].

When apply this method to non-autonomous equation Y” = f(x, y) in the scalar
case, we present the PLTE for y-component and its derivative:

hS
PLTE(y) = %(5#) +60?y® —2£,y® 4 30y,

h4
PLTE(Y) = 1oos Gy® + 60’y —2£,y 4 301y).

Therefore, this method is algebraically of third order, we denote this modified RKN
method by RKN5S3NEWL, and we denote the new 5(3) pair of modified RKN methods
by RKN53NEW.

4 Error analysis

In this paper we focus on solving the Schrddinger equation. In order to see the behavior
of the error, we have to carry out the error analysis. We follow the approach of Ixaru
and Rizea [42], one can find similar descriptions given by Anastassi and Simos [12],
Van de Vyver [32]. We consider the following RKN-type methods and labeling:

— EFRKNS: The fifth-order exponentially fitted explicit RKN method derived by Van
de Vyver [33].

@ Springer
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— RKNS PL-DPL-AF: The optimized fifth-order explicit RKN method given by Kosti
et al. [34].

— RKNS5 PL-AF-DAF: The optimized fifth-order explicit RKN method given by Kosti
et al. [35].

— FRKNS53H: The fifth-order explicit RKN method presented by Van de Vyver [36].

— RKNS5S2: The second fifth-order explicit RKN method obtained by Kalogiratou et
al. [2].

— RKNS53NEWH: The fifth-order modified RKN method obtained in this paper.

— RKNS3NEWL: The third-order modified RKN method obtained in this paper.

The fitted frequency w determines the performance of the method. A reasonable strat-

egy for frequencies approximations is: Divide [a, b] in some subintervals and on each

of them the function W (x) is approximated by a constant W, a choice for the fitted

frequency w in such a subinterval is given by @ = v E — W. Equation (1) is equivalent

with y” = f(x, y), where f(x, y) = (W(x) — E)y(x). We have found the following

asymptotic expressions for large |E|:

6

h
PLTE(Y)EFRKN5 ~ —%E2y(X)AW,

6

7560000
6

h
PLTE(Y)RKNSPL—DPL—AF =~ —%E3y(x),

PLTEG)EFRKNS & E? (3107y(x) W' (x) + 4647AW)y' (x)) ,

16
PLTE(Y)RKNSPL—DPL—AF &~ %E3yl(x),

6

h 3
PLTE AF— ~—-——F s
(V)RKNSPL—AF—DAF 7200 y(x)

h6
PLTE(Y)RKNSPL—AF—DAF ~ %E3y’(X),
ROy (x)
1800
6

h
PLTEG))FRENS3SH N Tygg B YW/ (),

6

3600 (
6

h
PLTE(Y )Rk N5s2 ~ mEzy(x)w’(x),

6

h
PLTEG)RKNSINEWH ~ 5655 E (3YW () +4W/ () () + 63(x)(AW)?)

6

h
PLTE(Y)RKNSINEWH ~ mE%(x)W’(x),

h5
PLTE(Y)RKNSINEWL ~ —%Ey(x)W’(X),
4

h
PLTE(Y)RKNSINEWL ~ —@Eyu)W’(x),

EZAW,

PLTE(Y)FRKNS3H ~ —

PLTE()RKNsS2~ = YEW () +4W 0y (x) = 25 () (AW)?2),
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where AW = W(x) — W.

It has been explained in [41] (p. 197) that the amplitude of the derivative y’ is
bigger by a factor E'/? than that of y. We conclude that the local errors produced
by methods RKN5S2 and RKN53NEWH on y and y’ are proportional with E3/2
and E?2, respectively. Both of them will have good numerical performance than other
fifth-order methods listed above when solving the Schrodinger equation especially
for large Energies. Further more, we observe that the local errors produced by the
new third-order method RKN53NEWL on y and y’ are proportional with E and E,
respectively. Thus the new 5(3) pair of modified RKN method RKN5S3NEW will have
good numerical performance when solving the Schrodinger equation especially for
large energies. This will be confirmed by the numerical results in the next section.

5 Numerical illustrations
5.1 Comparison with fixed step-size methods

In this subsection we will compare the numerical performance of the fifth-order
method RKN53NEWH of the new 5(3) pair with other fifth-order RKN-type methods:
EFRKNS, RKNS5 PL-DPL-AF, RKNS PL-AF-DAF, FRKN53H, RKN5S2 which have
been listed in Sect. 4.

We consider the numerical integration of the Schrddinger equation (1) with the
well-known Woods-Saxon potential and in the case of [ = 0:

uo uiq X — X0
V(x) = + , q=eXp( )
l1+q  (1+¢9)> a

with

uo
uy=-50, xo=7, a=0.6 and ulz—z.

The domain of integration is taken as [0, 15].

For this test potential we consider the so-called the resonance problem which con-
sists in finding those resonances(or energies) E € [0, 1000], at which the phase-shift
is equal to 7. The boundary conditions for this problem are

y0) =0 and ykx)= COS(«/Ex) for large x.
Following the suggestion by Ixaru and Rizea [42], the fitted frequency w is given by

" V30+ E, x € 0,6.5],
| VE, x € [6.5,15].

The numerical results obtained by the RKN-type methods are compared with the ana-
lytical solution of the Woods-Saxon potential, which are rounded to six decimal places.
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WOODS-SAXON POTENTIAL WITH E = 53.588872

-1
—&— EFRKN5
: —<&— RKN5 PL-DPL-AF
-2 g —#— RKN5 PL-AF-DAF |
——+— FRKN53H
RKN5S2
-3 r RKN53NEWH
T 41
£ -4
w
o
& 5
(@]
-
-6
-7 F -
_8 ‘ ‘ ‘ ‘ ‘
3 35 4 4.5 5 55 6

-LOG2(H)
Fig. 1 Efficiency for the Schrodinger equation using E = 53.588872

WOODS-SAXON POTENTIAL WITH E = 163.215341

| —+&— EFRKN5
| —<— RKN5 PL-DPL-AF
-1 —%— RKN5 PL-AF-DAF |
—+— FRKN53H
RKN5S2
-2 RKN53NEWH
£
w
o
& 4t
|
-5 F
1]
3
-6
L ‘ ‘ ‘ ‘ ‘
3 3.5 4 4.5 5 55 6

-LOG2(H)
Fig. 2 Efficiency for the Schrodinger equation using £ = 163.215341

Four resonances are considered:53.588872, 163.215341, 341.495874, 989.701916.
Figures 1, 2, 3, and 4 show the errors [0g 10| Eanalytical — Ecalculated | against —loga (h).
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WOODS-SAXON POTENTIAL WITH E = 341.495874

—+&— EFRKN5

—<— RKN5 PL-DPL-AF
—k%— RKN5 PL-AF-DAF |1
—+— FRKN53H
RKN5S2

-2 RKN53NEWH
3
w
o
8 -t
|
_5 .
6 + |
. | | |
4 4.5 5 55 6

-LOG2(H)
Fig. 3 Efficiency for the Schrodinger equation using E = 341.495874

WOODS-SAXON POTENTIAL WITH E = 989.701916

—&8— EFRKN5
—<— RKN5 PL-DPL-AF
—#— RKN5 PL-AF-DAF |1
—+— FRKN53H
RKN5S2
RKN53NEWH

LOG10(ERR)

7 . . .
5 5.5 6 6.5 7

-LOG2(H)
Fig. 4 Efficiency for the Schrodinger equation using E = 989.701916
5.2 Comparison with variable step-size methods

The methods used in the comparisons have been denoted by

— EFRKN43F: The exponentially fitted embedded 4(3) pair of explicit RKN methods
with FSAL property derived by Franco [37],
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2400 CALCULATION OF THE PHASE-SHIFTS FORK =5

—%— EFRKN43F
2200 | —o— FRKN43
—+— EFRKN53
2000 [ | —<%— FRKN53
—v— RKN53NEW

FUNCTION EVALUATIONS

INTEGER L OF THE CENTRIFUGAL POTENTIAL

Fig. 5 The number of function evaluations used by the considered codes as a function of 1 from the
centrifugal potential for energies k2 =25

— FRKN43: The embedded 4(3) pair of explicit RKN methods with FSAL property
obtained by Van de Vyver [38],

— EFRKNS53: The exponentially fitted embedded 5(3) pair of explicit RKN methods
presented by Van de Vyver [33],

— FRKNS53: The embedded 5(3) pair of explicit RKN methods given by Van de
Vyver [36],

— RKNS3NEW: the new embedded 5(3) pair of modified RKN methods derived in
this paper.

We consider the numerical integration of the Schrodinger equation (1) with the
widely discussed Lennard—Jones potential [29,43] which is given as follows

Vix) = 500(% — x_16)

Following the work by Raptis and Allison [45], we start the numerical integration
from xp = 0.7 with an initial stepsize 4 = 0.01. The first boundary condition can
be transformed to y(xg) = 0 [43], and we choose y'(xg) = 10~ for the initial
condition of the derivative. We use the variable stepsize algorithm in Sect. 2.1, and
take T'ol = 1078 for the computation of the phase-shifts correct to four decimal places
that has been pointed out by Raptis and Cash [44].

We consider the energies k? =25, k% = 100, k2 = 225 and k% = 900 and choose
the fitted frequency w = k. For the calculation of phase-shifts, Figs. 5, 6, 7, and 8
show the number of function evaluations as a function of / =0, ..., 10.
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CALCULATION OF THE PHASE-SHIFTS FOR K = 10
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Fig. 6 The number of function evaluations used by the considered codes as a function of 1 from the
centrifugal potential for energies k% =100

CALCULATION OF THE PHASE-SHIFTS FORK = 15
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Fig. 7 The number of function evaluations used by the considered codes as a function of 1 from the
centrifugal potential for energies k% =225

6 Conclusions
On the basis of the procedure of Kalogiratou et al. [2], a new embedded 5(3) pair

of modified Runge—Kutta—Nystrom methods is developed in this paper. We carry out
error analysis on the new 5(3) pair and some related methods, and obtain the asymp-
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CALCULATION OF THE PHASE-SHIFTS FOR K = 30
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Fig. 8 The number of function evaluations used by the considered codes as a function of 1 from the
centrifugal potential for energies k2 =900

totic expressions of the PLTEs for large energies. The analysis suggests theoretical
advantages of the new 5(3) pair and the new fifth-order method when solving the
Schrodinger equation. We apply the new fifth-order method to the Schrodinger equa-
tion with the Woods—Saxon potential (the resonance problem), and apply the new
embedded 5(3) pair to elastic scattering phase-shift problem. The numerical results
show good numerical performance of the new embedded 5(3) pair and the fifth-order
method.

Finally, we note that the new developed 5(3) pair depend on the fitted frequency,
we should keep in mind that the adapted methods can be applied only when a good
estimate of the principal frequency is obtained in advance. For more techniques of
estimating dominant frequency we refer the reader to the papers [46—49].

Acknowledgments This research was partially supported by NSFC (No. 11101357), the foundation of
Shandong Outstanding Young Scientists Award Project (No. BS2010SF031), NSF of Shandong Province
(No. ZR2011AL006) and the foundation of Scientific Research Project f Shangdong Universities (No.
JI1LG69).

References

1. G. Vanden Berghe, H. De Meyer, M. Van Daele, T. Van Hecke, Exponentially fitted Runge—Kutta
methods. Comput. Phys. Commun. 123(1-3), 7-15 (1999)

2. Z. Kalogiratou, Th Monovasilis, T.E. Simos, New modified Runge—Kutta—Nystrom methods for the
numerical integration of the Schrodinger equation. Comput. Math. Appl. 60(6), 1639-1647 (2010)

3. T.E. Simos, J. Vigo Aguiar, A modified Runge—Kutta method with phase-lag of order infinity for the
numerical solution of the Schrodinger equation and related problems. Comput. Chem. 25(3), 275-281
(2001)

@ Springer



J Math Chem (2014) 52:1081-1098 1097

4.

5.

6.

10.

11.

12.

14.

15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

T.E. Simos, An exponentially-fitted Runge—Kutta method for the numerical integration of initial-value
problems with periodic or oscillating solutions. Comput. Phys. Commun. 115(1), 1-8 (1998)

Z.A. Anastassi, T.E. Simos, An optimized Runge—Kutta method for the solution of orbital problems.
J. Comput. Appl. Math. 175(1), 1-9 (2005)

T.E. Simos, J. Vigo-Aguiar, A new modified Runge—Kutta—Nystrom method with phase-lag of order
infinity for the numerical solution of the Schrodinger equation and related problems. Int. J. Mod. Phys.
C 11(6), 1195-1208 (2000)

. A.A. Kosti, Z.A. Anastassi, T.E. Simos, An optimized explicit Runge—Kutta method with increased

phase-lag order for the numerical solution of the Schrodinger equation and related problems. J. Math.
Chem. 47(1), 315-330 (2010)

. Z. Kalogiratou, T.E. Simos, Construction of trigonometrically and exponentially fitted Runge—Kutta—

Nystrom methods for the numerical solution of the Schrodinger equation and related problems a method
of 8th algebraic order. J. Math. Chem. 31(2), 211-232 (2002)

. T.E. Simos, A fourth algebraic order exponentially-fitted Runge—Kutta method for the numerical solu-

tion of the Schrodinger equation. IMA. J. Numer. Anal. 21(4), 919-931 (2001)

T.E. Simos, Exponentially-fitted Runge—Kutta—Nystrom method for the numerical solution of initial-
value problems with oscillating solutions. Appl. Math. Lett. 15(2), 217-225 (2002)

J. Vigo-Aguiar, T.E. Simos, A family of P-stable eighth algebraic order methods with exponential
fitting facilities. J. Math. Chem. 29(3), 177-189 (2001)

Z.A. Anastassi, T.E. Simos, Trigonometrically fitted Runge—Kutta methods for the numerical solution
of the Schrodinger equation. J. Math. Chem. 37(3), 281-293 (2005)

. T.E. Simos, J. Vigo-Aguiar, Symmetric eighth algebraic order methods with minimal phase-lag for the

numerical solution of the Schrodinger equation. J. Math. Chem. 31(2), 135-144 (2002)

T.E. Simos, A new Numerov-type method for the numerical solution of the Schrodinger equation. J.
Math. Chem. 46(3), 981-1007 (2009)

I. Alolyana, T.E. Simos, A family of high-order multistep methods with vanished phase-lag and its
derivatives for the numerical solution of the Schrodinger equation. Comput. Math. Appl. 62(10), 3756—
3774 (2011)

. 1. Alolyana, T.E. Simos, High algebraic order methods with vanished phase-lag and its first derivative

for the numerical solution of the Schrodinger equation. J. Math. Chem. 48(4), 925-958 (2010)

I. Alolyana, Z.A. Anastassi, T.E. Simos, A new family of symmetric linear four-step methods for the
efficient integration of the Schrodinger equation and related oscillatory problems. Appl. Math. Comput.
218(9), 5370-5382 (2012)

I. Alolyana, T.E. Simos, A family of eight-step methods with vanished phase-lag and its derivatives
for the numerical integration of the Schrodinger equation. J. Math. Chem. 49(3), 711-764 (2011)
Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient integration
of the Schrodinger equation and related oscillatory problems. J. Comput. Appl. Math. 236(16), 3880—
3889 (2012)

J. Vigo-Aguiar, T.E. Simos, Review of multistep methods for the numerical solution of the radial
Schrodinger equation. Int. J. Quantum Chem. 103(3), 278-290 (2005)

G. Avdelas, T.E. Simos, J. Vigo-Aguiar, An embedded exponentially-fitted Runge—Kutta method for
the numerical solution of the Schrodinger equation and related periodic initial-value problems. Comput.
Phys. Commun. 131(1-2), 52-67 (2000)

T.E. Simos, J. Vigo-Aguiar, A dissipative exponentially-fitted method for the numerical solution of the
Schrodinger equation and related problems. Comput. Phys. Commun. 152(3), 274-294 (2003)

J. Vigo-Aguiar, H. Ramos, A variable-step Numerov method for the numerical solution of the
Schrédinger equation. J. Math. Chem. 37(3), 255-262 (2005)

J. Vigo-Aguiar, T.E. Simos, Family of twelve steps exponentially fitting symmetric multistep methods
for the numerical solution of the Schrodinger equation. J. Math. Chem. 32(3), 257-270 (2002)

J. Vigo-Aguiar, H. Ramos, Variable stepsize Stormer—Cowell methods. Math. Comput. Model. 42(7-8),
837-846 (2005)

J. Vigo-Aguiar, H. Ramos, Variable stepsize implementation of multistep methods for y” =
f(x,y,y").J. Comput. Appl. Math. 192(1), 114-131 (2006)

J. Vigo-Aguiar, J.M. Vaquero, Exponential fitting BDF algorithms and their properties. Appl. Math.
Comput. 190(1), 80-110 (2007)

J. Vigo-Aguiar, J.M. Vaquero, H. Ramos, Exponential fitting BDF-Runge—Kautta algorithms. Comput.
Phys. Commun. 178(1), 15-34 (2008)

@ Springer



1098 J Math Chem (2014) 52:1081-1098

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

H. Van de Vyver, An embedded phase-fitted modified Runge—Kutta method for the numerical integra-
tion of the radial Schrodinger equation. Phys. Lett. A 352(4-5), 278-285 (2006)

T.E. Simos, An embedded Runge—Kutta method with phase-lag of order infinity for the numerical
solution of the Schrodinger equation. Int. J. Mod. Phys. C 11(6), 1115-1133 (2000)

J.M. Franco, Runge—Kutta methods adapted to the numerical integration of oscillatory problems. Appl.
Numer. Math. 50(3-4), 427-443 (2004)

H. Van de Vyver, Comparison of some special optimized fourth-order Runge—Kutta methods for the
numerical solution of the Schrédinger equation. Comput. Phys. Comm. 166(2), 109-122 (2005)

H. Van de Vyver, An embedded exponentially fitted Runge—Kutta—Nystrom method for the numerical
solution of orbital problems. New Astron. 11(8), 577-587 (2006)

A.A. Kosti, Z.A. Anastassi, T.E. Simos, An optimized explicit Runge—Kutta—Nystrom method for the
numerical solution of orbital and related periodical initial value problems. Comput. Phys. Commun.
183(3), 470-479 (2012)

A.A. Kosti, Z.A. Anastassi, T.E. Simos, Construction of an optimized explicit Runge—Kutta—Nystrom
method for the numerical solution of oscillatory initial value problems. Comput. Math. Appl. 61(11),
3381-3390 (2011)

H. Van de Vyver, A 5(3) pair of explicit Runge—Kutta—Nystrom methods for oscillatory problems.
Math. Comput. Model. 45(5-6), 708-716 (2007)

J.M. Franco, Exponentially fitted explicit Runge—Kutta—Nystrom methods. J. Comput. Appl. Math.
167(1), 1-19 (2004)

H. Van de Vyver, A Runge—Kutta—Nystrom pair for the numerical integration of perturbed oscillators.
Comput. Phys. Commun. 167, 129-142 (2005)

T. Lyche, Chebyshevian multistep methods for ordinary differential equations. Numer. Math. 19(1),
65-75 (1972)

E. Hairer, S.P. Ngrsett, G. Wanner, Solving Ordinary Differential Equations I, Nonstiff Problems
(Springer, Berlin, 1993)

L.G. Ixaru, G. Vanden Berghe, Exponential Fitting, Mathematics and his Applications (Kluwer, Dor-
drecht, 2004)

L.G. Ixaru, A Numerov-like scheme for the numerical solution o f the Schrodinger equation in the
deep continuum spectrum of energies. Comput. Phys. Commun. 19(1), 23-27 (1980)

R.B. Bernstein, Quantum mechanical (phase shift) analysis of differentialelastic scattering of molecular
beams. J. Chem. Phys. 33, 795-804 (1960)

A.D. Raptis, J.R. Cash, A variable step method for the numerical integration of the one-dimensional
Schrodinger equation. Comput. Phys. Commun. 36(2), 113-119 (1985)

A. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrodinger
equation. Comput. Phys. Commun. 14, 1-5 (1978)

J. Vigo-Aguiar, T.E. Simos, J.M. Ferrandiz, Controlling the error growth in long-term numerical inte-
gration of perturbed oscillations in one or several frequencies. Proc. R. Soc. Lond. Ser. A Math. Phys.
Eng. Sci. 460(2), 561-567 (2004)

H. Ramos, J. Vigo-Aguiar, On the frequency choice in trigonometrically fitted methods. Appl. Math.
Lett. 23(11), 1378-1381 (2010)

G. Vanden Berghe, L.G. Ixaru, H. De Meyer, Frequency determination and step-length control for
exponentially-fitted Runge—Kutta methods. J. Comput. Appl. Math. 132(1), 95-105 (2001)

H. Van de Vyver, Frequency evaluation for exponentially fitted Runge—Kutta methods. J. Comput.
Appl. Math. 184(2), 442-463 (2005)

@ Springer



	A new embedded 5(3) pair of modified Runge--Kutta--Nyström methods for the numerical solution of the Schrödinger equation
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Embedded modified Runge--Kutta--Nyström methods
	2.2 Trigonometrically fitted modified Runge--Kutta--Nyström method

	3 Derivation of the new embedded 5(3) pair
	3.1 Trigonometrically fitted fifth order modified RKN method with second exponential order
	3.2 Trigonometrically fitted third order modified RKN method with second exponential order

	4 Error analysis
	5 Numerical illustrations
	5.1 Comparison with fixed step-size methods
	5.2 Comparison with variable step-size methods

	6 Conclusions
	Acknowledgments
	References


